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It is remarked that even in the classical limit the behavior of a charged particle interacting with a stationary 
current distribution exhibits paradoxical behavior. This comes from the inequality of action and reaction 
forces. It is shown that the vector potential term appearing in the expression for the canonical momenta 
represents the electromagnetic field momentum. 

I. INTRODUCTION 

IT has been shown by Aharonov and Bohm1 that 
according to the general principles of quantum 

mechanics the behavior of a charged particle will be 
affected by the presence of a static vector potential even 
though the particle should be constrained to move in a 
region of space where the magnetic field, B= VXA, is 
zero. This paradoxical situation has since been discussed 
by several authors,2 and Furry and Ramsey2 have 
discussed a similar effect involving the scalar potential. 

The effect follows from the canonical quantization 
procedure wherein the momentum canonically con
jugate to the position, p=mv+g/cA, is represented by 
(fi/i)^7 operating on the wave function, p then has a 
fundamental significance in that it determines the wave 
number of the Schrodinger waves. 

In the two-slit experiment considered by Aharonov 
and Bohm one has a solenoid between the two slits such 
that a magnetic flux is enclosed between paths which 
go from the source to the detector through the different 
slits, but the magnetic field is zero on all such accessible 
paths. Then the classical motion of charged particles 
going through either of the slits is unaffected by the 
solenoidal currents; but there is a phase difference, 
equal fi~l(q/c)J>'A-ds, in the waves going through one 
or the other slits which causes a shift of the diffraction 
pattern dependent on the value of the solenoidal flux. 
The sense of paradox arises from the dependence of the 
quantum behavior on a physical parameter, the en
closed flux, which the corresponding classical particle 
behavior is seemingly independent of. It may be said 
that this shows a peculiar quantum significance of the 
vector potential but this is not quite true. The total 
momentum, angular momentum, and energy of a 
system have fundamental quantum-mechanical signific
ance as the generators of space translations, rotations, 
and time translations, and the potentials appearing in 
nonrelativistic problems represent the contributions of 
the electromagnetic field to these physical quantities. 

Classically, the physical significance of the q/cA{r) 
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term in the canonical momentum is that it is the 
"interaction" momentum of the electromagnetic field, 
just as q<t>{r) is the interaction energy of the electro
magnetic field, g/crXA(r) is the interaction field 
angular momentum. For an isolated charged particle 
we know that a portion of its momentum, mass, etc., 
reside in the surrounding field and the above terms 
represent the change in these quantities when the 
particles are brought into interaction. (It is of course 
only in the nonrelativistic regime that the field proper
ties may be "integrated out" and expressed as potentials 
depending on the positions and velocities of the 
particles.) 

If, then, a charged particle is incident on a system of 
currents P= m\+MY+q/cA(r—R), is the total mo
mentum, where m, v, and r are the mass, velocity, and 
position of the particle, and M, V, and R represent the 
corresponding quantities for the body carrying the 
currents. P is of course conserved, whereas tnv+MY is 
usually not (action forces usually not equal to reaction 
forces in a system of charged particles and currents). 

The invariance of physical laws under space trans
lations leads to the identification of the operator for 
the total momentum with the generator of space 
translations, 

P = L i m%y%+ (qi/c)k(n— R) 
+ J f V-*(*/*)( E * V . + V « ) , 

where we have generalized slightly to allow for the 
presence of several charged particles. With the assump
tion that if M is indefinitely large then the state vector 
may be represented as a function of the n with R 
entering only as a parameter then it becomes reasonable 
to identify (h/i)V% with pi=mi\i+ql/cA(ri—'R). In 
the classical limit the mechanical momentum m\ and 
the interaction field momentum are separately measur
able but of course in the quantum limit the separation 
is limited by the uncertainty relation. Naturally we 
cannot "go behind" the identification of p with (h/i)^7> 
our point, which is modest, is only that the two parts 
of p are classically "physical" momenta. 

II. THE CLASSICAL LIMIT 

We now wish to derive the classical results alluded 
to in Sec. I, and incidentally to show that in the classical 
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limit the systems considered exhibit a behavior fully 
as paradoxical as that of the quantum systems. 

We consider a system of stationary currents and a 
particle of mass my charge q, and velocity v incident on 
the currents. To avoid irrelevant complications we 
suppose that electrostatic imaging effects and the 
change in the currents due to induced emfs are negli
gible. If the currents should be "wound" such that the 
magnetic flux is entirely contained within a certain 
region of space, e.g., the interior of a tightly wound 
infinitely long solenoid, or a toroid, then if the 
particle does not penetrate this region there is no force 
exerted on it by the currents and it maintains constant 
velocity. However, the particle does exert a force on 
the currents and will cause the current carrying body to 
move as it passes by. 

The force on the currents to first order in v/c is 

Fy= (q/c2) A ( r ' ) X ( v X V r ) | r - r ' | - W , 

= -g/c(vXV)XA(r) , 

= - g A C ( W ) A ( r ) + vX(VXA)~v(V-A)] , (1) 

where 

A(r) = (T1M(f ,)|r-r , |-1(Pr / (2) 

is the vector potential at the particle's position r due 
to the currents. We have supposed the currents sta
tionary, then from V j — 0, V-A=0 follows. 

The force on the particle is 

Fp=(gA)vX(VXA), (3) 

and so from Eqs. (1) and (3) 

FP+Fy= -q/c(v> V)A= - {d/dt){q/c)k. (4) 

We have tacitly assumed that the current-carrying 
body was so massive it did not move, however, if it has 
finite mass M, velocity V, and cm. position R then 
Eqs. (1), (3), and (4) remain correct to first order in 
v/c and V/c if the substitutions v-^v— V, r-^r— R are 
made in Eqs. (l)-(4).3 

We see from Eq. (4) that forces between a charged 
particle and a system of currents are usually not equal 
and opposite (e.g., neutron-electron interaction in the 
classical limit). The most striking examples are those 
for which there is no force on the particle then from 

3 This follows most easily from the fact that forces on a sta
tionary body are invariant under Lorentz transformations except 
for terms of the order V2/c2, see R. C. Tolman, Relativity, Thermo
dynamics, and Cosmology (Oxford University Press, New York, 
1934), p. 45. 

Newton's equation and Eq. (4) 

J fV=-((?A)A(r-R) . (5) 

For an infinite straight solenoid carrying flux <£, 
A(p,(p) = $(2irp)~1<pJ thus a charged particle placed 
at a distance p will cause the solenoid to circle around 
it with angular velocity co= (q/c)^(2wp2M)~1. Similarly, 
a charged particle a distance z along the axis of a 
ring solenoid will give the ring a z momentum 
= (q/c)$a2(z2-i-a2)~dl2, where a is the radius of the ring. 

From the general conservation laws of electro
dynamics the sum of the forces on the particle and 
currents is equal and opposite to the rate of change of 
the momentum of the electromagnetic field, and so 
from Eq. (4) 

-(471-c)-1 [ EXlkPr=—(q/c) A(r). (6) 
dt J dt 

We now have 
p+MV= const, (7) 

where, 
p=tnv+(q/c)A(r), (8) 

and the (q/c)A(r) term with A given by (2) represents 
the field momentum (strictly speaking it is the "inter
action momentum" obtained by crossing the E from 
the particle into the B from the currents and vice versa). 

We now give the direct elementary derivations for 
the field momentum p/ and angular momentum L/. We 
suppose the currents stationary and choose the gauge 
V-A=0. Neglecting terms of second order in v/c, 
V X E = 0 . It is then elementary to show that EXB 
= 4?rpA+ V E • A— V • E A - V • A E. In integrations 
over all space the terms involving V equal zero, and 
we obtain 

Pf=—fEXBdT = iq/c)\(t), (9) 
4xc/ 

L / = — f ( r - r 1 )X(ExBMr=( ? / c ) ( r - r 1 )XA(r ) . 
4wcJ 

(10) 

In Eq. (10) we have computed the angular momentum 
about a fixed point ri. 

Note added in proof. The discussion given above of 
the significance of the vector potential term in the 
canonical momenta is similar to one given by Murray 
Peshkin,4 which I was not aware of at the time this 
paper was written. 

4 Murray Peshkin, Proceedings of the Midwest Conference on 
Theoretical Physics held at the Argonne National Laboratory, 
June 1962. 


